

CAN 300
CAN Communication Module for S7-300

with CANopen- or CAN-Layer 2 handling blocks

700-600-CAN01

700-600-CAN81

Manual
Edition 13 / 22.06.2006 for HW1 & FW2.5 and above

Manual order number: 900-600-CAN01/en

Systeme Helmholz GmbH Gewerbegebiet Ost 36 D-91085 Weisendorf

Phone: +49 9135 7380-0 Fax: +49 9135 7380-50 E-Mail: info@helmholz.de Internet: www.helmholz.de

2 CAN 300

All rights are reserved, including those of translation, reprinting,
and reproduction of this manual, or parts thereof. No part of this
manual may be reproduced, processed, copied, or transmitted in
any way whatsoever (photocopy, microfilm, or other method)
without the express written permission of Systeme Helmholz
GmbH, not even for use as training material, or using electronic
systems. All rights reserved in the case of a patent grant or
registration of a utility model or design.

Copyright© 2005, 2006 by

Systeme Helmholz GmbH

Gewerbegebiet Ost 36, 91085 Weisendorf, Germany

Note:

We have checked the content of this manual for conformity with
the hardware and software described. Nevertheless, because
deviations cannot be ruled out, we cannot accept any liability for
complete conformity. The data in this manual have been checked
regularly and any necessary corrections will be included in
subsequent editions. We always welcome suggestions for
improvement.

Step and SIMATIC are registered trademarks of SIEMENS AG

CAN 300 3

Contents

1 Safety Information 7

1.1 General 7

1.2 Restriction of access 8

1.3 Information for the user 8

1.4 Use as intended 8

1.5 Avoiding use not as intended! 8

2 Installation and Mounting 9

2.1 Vertical and horizontal mounting 9

2.2 Minimum clearance 10

2.3 Mounting of the module on the DIN rail 10

3 System Overview 12

3.1 Application and function description 12

3.2 Connections 13

3.3 CAN cabeling 13

3.4 LED displays 14

3.5 Scope of supply 14

3.6 Accessories 14

4 Configuration in the PLC 15

5 Configuration of the CAN 300 module 17

5.1 Create new project 18

5.2 Setting the CAN bus baudrate 19

5.3 Setting the transmission mode (protocol) 19

5.4 Acceptance masks 20

5.5 Network management 21

5.6 Timer 22

5.7 Synchro window 23

4 CAN 300

5.8 Download 23

5.9 Diagnostics/debugging 24

6 Programming in the PLC 26

6.1 Overview 26

6.2 Layer 2 communication 26
6.2.1 General 26
6.2.2 CANSEND handling function 27
6.2.3 CANRCV handling function 28
6.2.4 CANSYNSEND handling function 29
6.2.5 Content of the status byte STAT 30

6.3 CANopen communication 31
6.3.1 General 31
6.3.2 Objects 31
6.3.3 Functions 32
6.3.4 Netmanagement 33
6.3.5 Handling blocks 35
6.3.6 CAN-DB 35
6.3.7 FC 40 Initialization 36
6.3.8 PDO-DBs 37
6.3.9 FC 49 cycle 38
6.3.10 FC 41 Reading and writing SDOs 39
6.3.11 FC 42 Download and upload SDO block 41
6.3.12 FC 44 Transmit PDO 43
6.3.13 FC 45 Request PDO 44
6.3.14 FC 43 Spontaneous receive 45
6.3.15 FC 48 Network management 46
6.3.16 FC 46 Service 46
6.3.17 FC 47 Nodeguarding/Heartbeat 47

6.4 Explanation of the example program 48
6.4.1 Example FC 10 (cycle/SDO/PDO/network management)48
6.4.2 Example FC 11 (spontaneous receive) 49
6.4.3 Example FC 12 (reading a SDO list) 49
6.4.4 Example FC 13 (writing an SDO list) 49
6.4.5 Example FC 3 (SDO Block/Segmented Download) 49

6.5 Error numbers 50
6.5.1 Abort codes 51

7 Appendix 52

7.1 Technical data 52

CAN 300 5

7.2 Pin assignment 53

7.3 Connecting cable 53

7.4 Further documentation 53

6 CAN 300

1 Safety Information
Please observe the safety information given for your own and
other people's safety. The safety information indicates possible
hazards and provides information about how you can avoid
hazardous situations.

The following symbols are used in this manual.

! Caution, indicates hazards and sources of error

i gives information

 hazard, general or specific

 danger of electric shock

1.1 General

The CAN 300 Master Module is only used as part of a complete
system.

! The operator of a machine system is responsible for observing
all safety and accident prevention regulations applicable to the
application in question.

 During configuration, safety and accident prevention rules
specific to the application must be observed.

 Emergency OFF facilities according to EN 60204 / IEC 204
must remain active in all modes of the machine system. The system
must not enter an undefined restart.

 Faults occurring in the machine system that can cause
damage to property or injury to persons must be prevented by additional
external equipment. Such equipment must also ensure entry into a safe
state in the event of a fault. Such equipment includes electromechanical
safety buttons, mechanical interlocks, etc. (see EN 954-1, risk
estimation).

 Never execute or initiate safety-related functions using the
operator terminal.

CAN 300 7

1.2 Restriction of access

The modules are open equipment and must only be installed in
electrical equipment rooms, cabinets, or housings. Access to the
electrical equipment rooms, barriers, or housings must only be
possible using a tool or key and only permitted to personnel
having received instruction or authorization. See also Chapter 2.

Only authorized persons
must have access to the
modules!

1.3 Information for the user

This manual is addressed to anyone wishing to configure or
install the CAN 300 module.

It is intended for use as a programming manual and reference
work by the configuring engineer. It provides the installing
technician with all the necessary data.

The CAN 300 modules is exclusively for use in a S7-300
programmable controller from Siemens. For that reason, the
configuring engineer, user, and installing technician must observe
the standards, safety and accident prevention rules applicable in
the particular application. The operator of the automation system
is responsible for observing these rules.

1.4 Use as intended

The CAN 300 module must only be used as a communication
system as described in the manual.

1.5 Avoiding use not as intended!

Safety-related functions must not be controlled using the CAN
300 module alone.

8 CAN 300

2 Installation and Mounting
The CAN 300 module must be installed according to VDE 0100
IEC 364. Because it is an "OPEN type" module, you must install it
in a (switching) cabinet. Ambient temperature: 0 ºC – 60 ºC.

 Before you start installation work, all system components
must be disconnected from their power source.

 Danger of electric shock!

 During installation, application-specific safety and accident
prevention rules must be observed.

2.1 Vertical and horizontal mounting

The modules can be mounted either vertically or horizontally.

Permissible ambient temperature:

for vertical mounting: from 0 to 40 ºC

for horizontal mounting: from 0 to 60 ºC

g g

CAN 300
Horizontal mountin
Vertical mountin

CPU and power supply must
be positioned as follows:
left for horizontal mounting!
below for vertical mounting!

9

2.2 Minimum clearance

Minimum clearances must be observed because

it ensures cooling of the CAN 300 modules

it provides space to insert and remove modules

it provides space to route cables

it increases the mounting height of the module rack to 185 mm,
although the minimum spacing of 40 mm must still be observed

The following diagram shows the minimum spacing between the
module racks and between these and any adjacent cabinet walls,
equipment, cable ducts, etc. for S7-300s mounted in several
module racks.

Non-observance of the
minimum distances can
destroy the module at
high ambient
temperatures!

2.3 Mounting of the module on the DIN rail

A bus connector is included with each signal module but not with
the CPU. When connecting the bus connect, always start with the
CPU.

Take the bus connector off the last module and insert it into the
CPU. Do not plug a bus connector into the last module of the
tier.

10 CAN 300

Hook on the modules (1), slide them up to the left module, and
click them on them downward (3).

Screw the modules on with a torque of 0.8 to 1.1 Nm.

CAN 300 11

3 System Overview

3.1 Application and function description

The CAN 300 module from System Helmholz GmbH allows you
to connect any CAN stations to the programmable controller. The
module is plugged into the backplane bus of the programmable
controller. It can be used both in the central controller and the
expansion unit.

The CAN 300 module must be parameterized as a communication
module in the hardware configurator and takes up 16 bytes in the
analog process image. Data is exchanged with the PLC via the
backplane bus.

The handling blocks that permit simple handling of CAN
communication are supplied as source code. Handling blocks are
available for layer 2 and for CANopen master communication.

Ask also for special CANopen Slave or for LENZE Systembus
handling blocks.

The scope of supply also includes a Windows parameterization
tool "CANParam" for easy setting of the CAN communication
parameters.

The CAN 300 module supports both CAN 2.0A (11 bits) and CAN
2.0B (29 bits) frames as Highspeed Node (ISO 11898-2) with a
freely selectable baudrate of 10Kbps to 1Mbps, or freely editable
bit timing.

The CAN 300 module contains the management functions "Power
On", "Stop->Run" and "Run->Stop". Behind each of the three
functions it is possible to use a simple macro language to
configure CAN bus response with up to 512 frames that is execute
automatically by the module when the event occurs.

In a multilevel acceptance mask it is possible to prefilter the IDs
relevant to the programmable controller. Only those CAN frames
are accepted that are required, which off-loads the cycle of the
programmable controller.

11 freely settable timers are available in the CAN 300 module.
Each can trigger a freely programmable CAN frame. That way, it is
easy to implement the synchronous protocols in common use in
drive and servo systems using the CAN 300 module.

It is also possible to have the data sent via the CAN bus only in a
time window. The data to be transmitted are transferred non-
cyclically by the programmable controller and transmitted from
the CAN 300 module after the parameterized time has elapsed.

12 CAN 300

3.2 Connections

The CAN 300 module has two 9-pin SubD connectors behind the
front flap.

The upper connector is for the CAN bus, the lower SubD
connectors is the RS232 interface with the PC for configuration
the module.

Pin assignment:

Pin SUBD connector RS232 SUBD connector CAN
1 - -
2 Rx CAN Low
3 Tx CAN GND
4 - -
5 GND -
6 - -
7 - CAN High
8 - -
9 - -

i
There is no 24V power
supply on the CAN-
connector available.

3.3 CAN cabeling

A CAN bus cable requires at least 3 lines: CAN High, CAN Low,
and CAN Ground. Only a bus structure is permitted. A 120-ohm
terminating resistor between CAN High and CAN Low must be
connected to both ends of the CAN bus cables. The CAN 300
module does not contained an integrated terminating resistor. i

The CAN 300 module
does not contain an
integrated terminating
resistor.

Check for correct cabling in the Debug dialog box of the
CANParam (see Chapter 5.9)

The maximum cable lengths mainly depend on the baud rate
used.

Bitrate Bus Length Bit Time
1 Mbps 30 m 1 µsek.

800 Kbps 50 m 1,25 µsek.
500 Kbps 100 m 2 µsek.
250 Kbps 250 m 4 µsek.
125 Kbps 500 m 8 µsek.
20 Kbps 2500 m 50 µsek.
10 Kbps 5000 m 100 µsek.

The stated cable lengths are for guidance only. The maximum
cable length also depends on the number of stations connected
and on the type of cable.

More detailed information is available in document “CANopen
Recommendation DR 303-1”.

CAN 300 13

3.4 LED displays

The three LEDs on the front of the module inform you about its
operating state.

LED RUN (green):

Continuous light indicates that the
module is in cyclic operation.
Blinking light indicates that the module
is starting up or that the PLC is in the
stop state. Communication with the CPU
is then not possible. CAN bus frames
cannot be transmitted or received then
either.

LED SF (red):

i
CAN-frames that are
transmitted via the timer
of the module are not
indicated by the yellow
LED.

A serious error has occurred on the module. Check debug screen
with CANParam.

LED CAN (yellow):

CAN bus active: Indicates running communication (transmitting
and receiving) via the CAN bus.

3.5 Scope of supply

CAN 300 module, Bus connector

3.6 Accessories

CAN CD with Parameterization software “CANParam”,
“Layer 2” and “CANopen” handling blocks 800-600-CAN01

CAN CD with parameterization software "CANParam",
"Layer 2" and "LENZE systembus" handling blocks
 800-600-1LZ11

Manual, german / english 900-600-CAN01

Programming cable PC <-> CAN 300 module 700-610-0VK11

CAN bus connector 700-690-0BA11

CAN bus connector with 2. connector 700-690-0BB11

CAN bus connector axial 700-690-0CA11

14 CAN 300

4 Configuration in the PLC
The CAN 300 module is configured as the communication
module in the programming software of the PLC. On the
installation CD you find a Step 7 project that already contains a
configured module and the required data handling blocks.

The module can be used wherever a CP module is allowed, i.e.
also in the expansion unit after an interface module.

It is not possible to use
the CAN300 module in
a ET200M !

CAN 300 15

In parameterization of the module, only the range of I/O
addresses is relevant. All other settings have no effect on the
module.

The addresses for the
inputs and the outputs
must always be the
same so that the data
handling software can
access then correctly.

16 CAN 300

5 Configuration of the CAN 300 module
The CAN 300 module is configured on the PC with the
"CANParam V3" software. This software is supplied together with
the handling blocks for the S7 and can run on any Windows
2000/XP computer.

The configuration of a module can be stored in a project file on
the PC.

You can use a normal commercial type null modem cable to link
the PC to the CAN 300 module (see also 7.3). After installation
and starting of the CANParam software, you should set the
interface top right on the menu bar.

CAN 300 17

5.1 Create new project

A new project can be created via the "Project / Create project /
Projectwizard" function or with the project wizard.

The project wizard guides you through the most important
settings to obtain a new and complete project.

18 CAN 300

5.2 Setting the CAN bus baudrate

You can select the CAN baudrate in the range from 10kbps to
1Mbps in a fixed scale, or enter any baudrate.

For special applications you can define the bit time of
transmission directly. For a precise description of the bit timing
see CAN Specification 2.0 Part B, Chapter 10 onward.

5.3 Setting the transmission mode (protocol)

The CAN 300 module supports both the protocol format CAN
2.0A (11 bits) and CAN 2.0B (29 bits).

For use of the CANopen handling blocks, a CAN 2.0A (11 bits)
must always be selected.

CAN 300 19

5.4 Acceptance masks

16 acceptance masks are available in the CAN 300 module. Using
these masks you can enable or block various frame IDs for
receiving.

i
The default setting of
the acceptance mask (0h
to 7FFh) is to allow
receipt of all frames.

With the acceptance masks "Express Mask" it is possible to handle
high priority CAN frames. Received frames with the accepted IDs
of this mask, are routed directly to the S7 CPU without using the
receive buffer.

20 CAN 300

5.5 Network management

The CAN 300 module can transmit freely programmable frames
for the PLC events "Power ON", "Stop -> Run", and "Run -> Stop",
and start and stop timers.

The following commands are available:

Send Transmit frame
 (Structure: ID, length, data byte 1, data byte 2, etc.)

Fetch Transmit frame with RTR bit 1

Start Start Timer X

Stop Stop Timer X

Wait Wait X ms

// Comment line

i
The steps in the scripts
are executed in a
timebase of 50ms.

CAN 300 21

5.6 Timer

11 timers are available for time-dependent events in the CAN 300
module. Each timer can transmit any CAN frame.

An alias can be assigned to each timer. This name can the be used
in the scripts of the PLC events.

The time repetition period states the repeat interval for the timer,
the phase the starting point within the interval.

For the timer repetition period, times from 5 msec. to 1 sec. can be
set in steps of 5 msec. For the phase 0msec to 5 msec before the
period duration.

The data of the CAN frame defined for the timer are initialization
data and can be overwritten by the S7-CPU in cyclic operation by
the FC 63 "CANSYNCSEND".

22 CAN 300

5.7 Synchro window

If you are using the synchronous timer (setting "synchronous
queue"), the frames transmitted asynchronously by the FC 60
"CANSEND" are transmitted within a time window. "Repeat"
indicates the repeat rate, "Begin phase" & "End phase" defines the
transmit window within the repeat time.

The frames to be
transmitted are only
transmitted within the time
window between "Begin
phase" & "End phase".

This makes time on the bus
outside the synchronous
window for communication
by other stations.

Synchro window:
Frames are transmitted

Repeat

End
Phase

Begin
Phase

Timer 1 is needed internally, if the synchronous window is used.

The functionality of the other timers is not affected by the
synchronous window, i.e. they can also be transmitted outside
the synchronous window.

5.8 Download

The project currently being worked on can be imported into the
CAN 300 module again at any time ("download").

Updload of a project from the CAN 300 module is not possible.

CAN 300 23

5.9 Diagnostics/debugging

To simplify debugging, you can query the status of the CAN 300
module with menu item "Debug". Debug mode requires a serial
link with the module.

You can activate monitoring mode with the "Connect" button.
Click the button again to disconnect.

With the "Active ON" button, online monitoring mode is
activated. If you press the button again, the link will be
disconnected again.

The debug dialog provides the following information:

Version Version number of the CAN 300 operating
system

Protocol Configured CAN protocol (11bit/29bit/etc.)

Bit Timing Content of the bit timing register, baudrate and
SJW are displayed in plain text

CAN Status Content of the CAN status register:
Bit 15: Transmitting
Bit 14: Receiving
Bit 10: Node state transition occurred
Bit 9+8: Node state (also displayed in plain text)
Bit 7: Enable Tx
Bit 0: Halt/Bus Off State of CAN Controller

!
Node Status has to be on
„OK“, for enabling CAN
communication.

Node Status Content of bits 9+8 of CAN status register:
”OK”, “Warning”, “Error passive”, “Bus Off”

24 CAN 300

TR Request Display of the transmit & receive request:
Bit 15: Script processing
Bits 13 & 14: Asynchronous transmit buffer
Bit 12: Lifeguarding
Bit 11 - 1: Timer 10 – 0
Bit 0: Receive

!
Error Counters has to
„0“, otherwise the CAN
communication is
malfunctioning.

Error counters TX: Error counter transmit (active & passive)
 RX: Error counter receive (passive)

Note: The transmit and receive error counters are incremented by
the CAN controller, if transmission and receipt of a telegram has
failed. As soon as a telegram has been correctly transmitted or
received, the corresponding counter is decremented again. This
counter should always be at 0 when the CAN bus is functioning
correctly!

Buffer pointers Display of the circulating buffer pointers:
 TX Head: Transmit data from S7
 TX Tail: Data transmitted via CAN
 RX Head: Receive data from CAN
 RX Tail: Receive data transmitted to S7

Note: The CAN 300 module has a receive buffer and a transmit
buffer for 128 telegrams each. The buffer pointers indicate to
what extent the buffers are full. For example, if a CAN telegram
has been received, “Rx Head” is incremented. If the telegram has
then been passed on to the PLC (fetched by the data handling
block), “Rx Tail” is incremented (read/write pointer principle).
There should never be a big difference between pairs of pointers.
If there is, the CAN telegrams are not being fetched fast enough
by the PLC, or are being transmitted too fast by the PLC.

Status of state machine
 Bit 0: Module running, read-in of the
parameters completed
 Bit 1: Script processing "POWER ON" running
 Bit 2: Script processing "STOP->RUN" running
 Bit 3: Script processing "RUN->STOP" running
 Bit 4: CAN transmit FIFO full, stop sending
 Bit 5: CAN receive FIFO more than half full,
 Overflow immanent, the S7 must read the
 FIFO faster
 Bit 7: PLC in STOP

Last error from Event function
 Last error of script processing

CAN 300 25

6 Programming in the PLC

6.1 Overview

The CAN 300 module is programmed in the PLC using the
handling blocks supplied.

Handling blocks are available for pure layer 2 communication and
for communication with CANopen stations as the master.

6.2 Layer 2 communication

6.2.1 General
3 FCs are available for layer 2 communication:

FC 60 CANSEND Transmission of a CAN frame
(asynchronous)

FC 61 CANRCV Receiving a CAN frame

FC 63 CANSYNCSEND Transmission of a CAN frame
(synchronous)

The base address set in the hardware configurator must be passed
to each block.

Initialization of the module in the start-up OBs is not necessary.
The module starts automatically if the PLC is switched to RUN
and stops if the PLC goes into the STOP state.

Here is an example of a call:

 CALL FC 61
 Base :=256
 IDHI :=MW60
 IDLO :=MW62
 RTRLEN:=MW64
 DW0 :=MW70
 DW1 :=MW72
 DW2 :=MW74
 DW3 :=MW76
 STAT :=MB66
 Recd :=M67.0

 AN M 67.0
 JC send
 ...

send: SET
 = M 87.0

 CALL FC 60
 Base :=256
 IDHI :=MW80
 IDLO :=MW82
 RTRLEN:=MW84
 DW0 :=MW90
 DW1 :=MW92
 DW2 :=MW94
 DW3 :=MW96
 STAT :=MB86
 Snd :=M87.0

26 CAN 300

6.2.2 CANSEND handling function
The CANSEND function block (FC60) transfers a CAN frame to
the module from which it is transmitted immediately.

Parameter Direction Type Example
Base IN INT 256
IDHI IN WORD DBW20
IDLO IN WORD DBW22
RTRLEN IN WORD DBW24
DW0 IN WORD DBW26
DW1 IN WORD DBW28
DW2 IN WORD DBW30
DW3 IN WORD DBW32
STAT OUT BYTE MB 3
Snd IN/OUT BIT M 1.0

As the passed parameters, the base address of the module must be
passed as an integer number (Base), a status byte (STAT), and a
bit for transmit enable (Snd).

The frame is located at any point in a data block that must be
open before FC60 is called. The elements of the frame are passed
as source data words (IDHI, IDLO, RTRLEN, DW0...3).

The word RTRLEN contains the number of data bytes (0...8) in
the lower 4 bits (bit 0 to bit 3). Bit 4 is the RTR bit of the CAN
frame.

The bit Snd is always reset after the block has been executed. The
frame to be transmitted is always transferred to the module. If the
transmit buffer in the module is full, older frames that have not
been transmitted yet are deleted. To prevent that, bit 4 of the
STAT byte must always be queried before transmission.

The status of the CAN 300 module is in the STAT byte. The byte is
always assigned value, even if the Snd bit is not set. It is advisable
to call up block CANRCV before the CANSEND block so that the
up-to-date status information is available.

If Timer 0 has been set as the synchronous timer, the data are
only ever transmitted in a defined synchronous time window.

CAN 300 27

6.2.3 CANRCV handling function
The CANRCV function block (FC61) transfers a CAN frame from
the module to a data block if a frame has been received and this
frame has also been let through by the acceptance filter.

Parameter Direction Type Example
Base IN INT 256
IDHI OUT WORD DBW20
IDLO OUT WORD DBW22
RTRLEN OUT WORD DBW24
DW0 OUT WORD DBW26
DW1 OUT WORD DBW28
DW2 OUT WORD DBW30
DW3 OUT WORD DBW32
STAT OUT BYTE MB 3
Rcvd IN/OUT BIT M 1.0

As the passed parameter, the base address of the module must be
passed as an integer number (Base).

The elements of the frame are passed as target data words (IDHI,
IDLO, RTRLEN, DW0...3).

The word RTRLEN contains the number of data bytes (0...8) in
the lower 4 bits (bit 0 to bit 3). Bit 4 is the RTR bit of the CAN
frame.

If the function block has read a frame from the CAN 300 module,
bit Recd is set.

The status of the CAN 300 module is in the STAT byte. The byte is
always assigned a value even if no frame has been received. It is
advisable to call up block CANRCV before the CANSEND block so
that the up-to-date status information is available.

28 CAN 300

6.2.4 CANSYNSEND handling function
The function block CANSYNCSEND (FC63) transfers a CAN frame
to the module. The CAN 300 module uses the ID to search for the
timer suitable for the frame and only transmits the frame on the
next timer event.

Parameter Direction Type Example
Base IN INT 256
IDHI IN WORD DBW0
IDLO IN WORD DBW2
RTRLEN IN WORD DBW4
DW0 IN WORD DBW6
DW1 IN WORD DBW8
DW2 IN WORD DBW10
DW3 IN WORD DBW12
STAT OUT BYTE MB 2
Snd IN/OUT BIT M 1.0

As the passed parameters, the base address of the module must be
passed as an integer number (Base), a status byte (STAT), and a
bit for transmit enable (Snd).

The elements of the frame are passed as source data words (IDHI,
IDLO, DW0...3).

The bit Snd is always reset after the block has been executed. The
frame to be transmitted is always transferred to the module.

The status of the CAN 300 module is in the STAT byte. The byte is
always assigned a value even if no frame has been received.

CAN 300 29

6.2.5 Content of the status byte STAT
The status byte STAT has the same meaning in all data handling
blocks and indicates the status of the module:

Bit 0: Module running, read-in of the parameters completed.

i
In many applications it
is necessary to transmit
a series of frames to the
module in a cycle. The
FIFO circulating buffer is
128 frames long. If bit 4
of the status byte is set,
it is possible to transmit
another 64 frames at
once to the module.

Bit 1: Script processing "POWER ON" running.

Bit 2: Script processing "STOP->RUN" running.

Bit 3: Script processing "RUN->STOP" running.

Bit 4: CAN send FIFO more than half full, overflow imminent,
S7 should not transfer any more frames to the module.

Bit 5: CAN receive FIFO more than half full, overflow
imminent, the S7 should read out the FIFO faster.

Bit 6: CAN send FIFO full. If further frames are transferred to
the module, older, not transmitted frames are deleted.

Bit 7: Module in RUN/Reset (hardware status)

30 CAN 300

6.3 CANopen communication

6.3.1 General
The CANopen protocol is a layer 7 protocol (application layer)
based on the CAN bus (ISO 11898). Layer 1 and 2 (physical layer
and data link layer) are not affected by the CAN bus.

The CANopen communication profiles for the various
applications are managed by the CIA.

The services elements provided by the application layer permit
implementation of an application distributed over the network.

C
w
T
a
o
C

i
CIA = CAN in Auto-
mation e.V., Am
Weichselgarten 26,
91085 Erlangen,
Germany
These service elements are described in "CAN Application Layer
(CAL) for Industrial Applications".

ANopen always works
ith CAN 2.0A (11bits).
his must be taken into
ccount in configuration
f the module with
ANparam.

The 11 bit identifier and the 8 data bytes of a CAN layer 2
message frame have a fixed meaning.

Each devices in a CANopen network has a fixed node ID (module
number, 0-127).

6.3.2 Objects
Data exchange with a CANopen slave is performed either using
permanently defined service data objects (SDO) or using freely
configurable process data objects (PDO).

Each CANopen slave has a fixed list of SDOs that are addressed by
and object number (16 bits) and an index (8 bits).

Example: Object 0x1000/ Index 0 = Device Type, 32Bit Unsigned

SDOs with a width of 8/16/32 bits can be read and written with a
CANopen message frame. SDOs that are longer are transmitted in
more than one message frame. For very large volumes of data,
SDO block transmission is possible.

SDOs can be processed as soon as a CANopen slave is ready for
operation. For the SDOs, only the COB ID functions "SDO
request" or "SDO response" are available. The object number,
access mode, and type are stored in the first 4 bytes of the CAN
message frame.

The last 4 bytes of the CAN message frame then contain the value
for the SDO.

CAN 300 31

PDOs contain the "working values" of a a CANopen slave for
cyclic process operation. Each CANopen slave can manage several
PDOs (normally up to 4 for transmission and 4 for receiving).

i
Each CANopen slave
should have a object
dictionary containing the
objects it supports.

Each of the existing PDOs has its own COB-ID. It is possible to
map any information of the CANopen slave to the 8 data bytes of
the message frame for reading and writing. These can be both
existing SDOs and updated values of the slaves (e.g. analog value
or an input).

The PDOs are automatically mapped from most CANopen slaves
on startup. The assignment can be changed using certain SDOs.

6.3.3 Functions
The CANopen functions are subdivided into the three basic
groups:

Reading and writing SDO

Reading and writing PDO

Networkmanagement

The function code is stored in the upper 4 bits of the identifier.
Together with the node ID this makes up the COB identifier.

COB identifier (COB-ID):

It is possible to change
some COB-IDs to other
values using special
service data objects
(SDOs).
This is NOT supported
by the CANopen
handling blocks!

10 9 8 7 6 5 4 3 2 1 0
Function Node ID

Broadcast functions:

Function Function code
(binary)

Resulting COB-ID

NMT 0000 0h
SYNC 0001 80h

TIME STAMP 0010 100h

Node functions:

Function Function code
(binary)

Resulting COB-ID

EMERGENCY 0001 81h –FFh
PDO1 (tx) 0011 181h – 1FFh
PDO1 (rx) 0100 201h – 27Fh
PDO2 (tx) 0101 281h – 2FFh
PDO2 (rx) 0110 301h – 37Fh
PDO3 (tx) 0111 381h – 3FFh
PDO3 (rx) 1000 401h – 47Fh
PDO4 (tx) 1001 481h – 4FFh
PDO4 (rx) 1010 501h – 57Fh
SDO (tx) 1011 581h – 5FFh
SDO (rx) 1100 601h – 67Fh

NMT Error Control 1110 701h – 77Fh

i
„Tx“ = Slave is sending
„Rx“ = Slave is receiving

32 CAN 300

6.3.4 Netmanagement

i
The SYNC frame can be
implemented using a
timer with the CAN 300
module.

SYNC:
The SYNC message frame is a cyclic "broadcast" frame and sets the
basic bus clock. To ensure isosynchronism, the SYNC frame has a
high priority. [COB-ID: 80h]

i
The time stamp frame
can be implemented
using a timer with the
CAN 300 module.

Time Stamp:
The time stamp frame is a cyclic "broadcast" frame and provides
the system time. The time stamp frame is usually transmitted
directly after a SYNC frame and then provides the system time of
the SYNC frame.

To ensure a precise transmission, the time stamp frame has a high
priority. [COB-ID: 100h]

Nodeguarding:
With the Nodeguarding function, the CAN 300 Master monitors
the CANOpen slave modules by transmitting message frames
cyclically to each slave. Each CANopen slave must respond to the
Nodeguarding message frame with a status frame.

The control can detect failure of a CANopen slave using
Nodeguarding. [COB-ID: 700h + Node-ID]

CAN 300 33

Lifeguarding:
In Lifeguarding, each CANopen slave continuously monitors
whether the master is performing Nodeguarding once it has been
started within certain time limits.

If the Nodeguarding frame of the master fails, the distributed I/O
module can detect that using Lifeguarding and, for example, put
all outputs into the safe state.

Heartbeat:
Heartbeat monitoring is equivalent to Nodeguarding although no
response frames are generated by CANopen slave. The Heartbeat
frame can only work usefully if Lifeguarding is active on the
CANopen slave.

Emergency message:

i
Some CANopen slave
modules generate special
messages after power-on
or power-off

If a fault occurs on a CANopen slave, for example, the
Lifeguarding timer elapses, it transmits an emergency message on
the bus. [COB-ID: 80h + Node-ID]

All stations must perform an emergency stop on receiving an
emergency frame.

BootUp message:
CANopen slaves generate a boot-up message when they are
switched on, which the master can detect for the purpose of
initializing this new node.
[COB-ID: 700h + node ID + 1 byte data: 00h]

34 CAN 300

6.3.5 Handling blocks

The CANopen data
handling blocks should
not be called up together
with layer 2 handling
blocks!

The handling blocks for CANopen communication provide all the
necessary functions to process SDOs and PDOs and perform
network management.

This manual decribes the handling blocks of version 2.2.

The CAN 300 module works with these handling blocks as a
master in the CANopen network.

Block Function User / System Chapter

FC 40 Initialization (restart) User 1.1.1
FC 41 Read SDO User 1.1.1
FC 41 Transmit SDO User 1.1.1
FC 42 SDO block download User 1.1.1
FC 42 SDO block upload User 1.1.1
FC 43 Spontaneous receive (NMT,

PDO, etc.)
User 1.1.1

FC 44 Transmit PDO User 1.1.1
FC 45 Request PDO User 1.1.1
FC 46 CAN service User 6.3.16
FC 47 Nodeguarding/Heartbeat User 6.3.17
FC 48 Network management User 1.1.1
FC 49 Cycle System 1.1.1

DB-PDO PDO data received User 1.1.1
CAN-DB Management DB System 6.3.6

6.3.6 CAN-DB
One CAN-DB (length 300 bytes) containing the management
information is required for each CAN 300 module. The CAN-DB is
initialized by the FC 40 and used by all other FCs.

In this block, the CAN frames received and transmitted are stored
before they are passed on and current jobs are managed.

CAN 300 35

6.3.7 FC 40 Initialization
The FC 40 must be called up during startup of the PLC. The FC 40
initializes the CAN-DB so that all other CANopen data handling
blocks can work correctly.

i
FC 40 does not restart
the CAN module. It
cannot be used to "reset"
the module!

Parameter Direction Type Range Example
CanDB IN BLOCK-DB DB 1 – DB 2047 DB 40
BaseAddr IN INT 256 – 512 256
PDO_DB_1 IN INT 0 – 2047 51
PDO_DB_2 IN INT 0 – 2047 0
PDO_DB_3 IN INT 0 – 2047 0
PDO_DB_4 IN INT 0 – 2047 0

CanDB internal DB with current CAN data
BaseAddr base address of the module
PDO_DB_1..4 number of DBs for receiving the PDO 1..4 data of all

nodes

36 CAN 300

6.3.8 PDO-DBs
The data of received PDO frames are automatically copied into
DBs by FC 47 "Cycle". For that purpose, it is necessary to specify
one DB for each PDO (1-4) during initialization (see 1.1.1).

Each DB contains space for 8 bytes PDO data for all 63 nodes.
Each PDO-DB must therefore be at least 512 bytes long.

 PDO1 DB PDO2 DB PDO3 DB PDO4 DB

 DBB0 not used not used not used not used

 … not used not used not used not used

 DBB7 not used not used not used not used

Node 1 DBB8 1. Byte of
Node 1 / PDO1

1. Byte of
Node 1 / PDO2

1. Byte of
Node 1 / PDO3

1. Byte of
Node 1 / PDO4

 DBB9 2. Byte of
Node 1 / PDO1

2. Byte of
Node 1 / PDO2

2. Byte of
Node 1 / PDO3

2. Byte of
Node 1 / PDO4

 DBB10 3. Byte of
Node 1 / PDO1

3. Byte of
Node 1 / PDO2

3. Byte of
Node 1 / PDO3

3. Byte of
Node 1 / PDO4

 DBB11 4. Byte of
Node 1 / PDO1

4. Byte of
Node 1 / PDO2

4. Byte of
Node 1 / PDO3

4. Byte of
Node 1 / PDO4

 DBB12 5. Byte of
Node 1 / PDO1

5. Byte of
Node 1 / PDO2

5. Byte of
Node 1 / PDO3

5. Byte of
Node 1 / PDO4

 DBB13 6. Byte of
Node 1 / PDO1

6. Byte of
Node 1 / PDO2

6. Byte of
Node 1 / PDO3

6. Byte of
Node 1 / PDO4

 DBB14 7. Byte of
Node 1 / PDO1

7. Byte of
Node 1 / PDO2

7. Byte of
Node 1 / PDO3

7. Byte of
Node 1 / PDO4

 DBB15 8. Byte of
Node 1 / PDO1

8. Byte of
Node 1 / PDO2

8. Byte of
Node 1 / PDO3

8. Byte of
Node 1 / PDO4

Node 2 DBB16 1. Byte of
Node 2 / PDO1

1. Byte of
Node 2 / PDO2

1. Byte of
Node 2 / PDO3

1. Byte of
Node 2 / PDO4

 … … … … …

 DBB23 8. Byte of
Node 2 / PDO1

8. Byte of
Node 2 / PDO2

8. Byte of
Node 2 / PDO3

8. Byte of
Node 2 / PDO4

Node 63 DBB504 1. Byte of
Node 63 / PDO1

1. Byte of
Node 63 / PDO2

1. Byte of
Node 63 / PDO3

1. Byte of
Node 63 / PDO4

 … … … … …

 DBB511 8. Byte of
Node 63 / PDO1

8. Byte of
Node 63 / PDO2

8. Byte of
Node 63 / PDO3

8. Byte of
Node 63 / PDO4

The COB-IDs of the frames affected are permanently assigned:

PDO1 (tx) 180h + Node-ID
PDO2 (tx) 280h + Node-ID
PDO3 (tx) 380h + Node-ID
PDO4 (tx) 480h + Node-ID

The PDO data can also be fetched by FC 43 Spontaneous receive
(see 6.3.14).

CAN 300 37

6.3.9 FC 49 cycle
FC 49 should be executed in the cycle of the program. It transmits
and receives the frames and assigns the data to the jobs. It also
copies the PDO data into the PDO receive DBs (see 6.3.7 FC 40
Initialization).

Parameter Direction Type Range Example
CanDB IN BLOCK-DB DB 1 – DB 2047 DB 140
T IN TIMER T 0 – T 511 T 49
Buffer info OUT WORD MW 0 – MW 1024 MW 140

CanDB internal DB with current CAN data, see
FC 40 Initialization

T Timer for internal use. If more than one CAN300
module is used in a system, one timer per module is
required.

Buffer info Display of the assigned receive buffers, or the
current jobs (transmit buffers). This information can
be evaluated before new jobs are started.

Lower byte for transmit buffer:
Bit 1 = SDO transmit buffer assigned. Do not start a new

job with FC41 or FC 42.
Upper byte for receive buffer:

Bit 0 = PDO frames received (COB-IDs 200h-57Fh)
=> Call up FC 43 function 0.

Bit 2 = Timestamp frames received (COB-IDs 100h)
=> Call up FC 43 function 2.

Bit 3 = NMT received (COB-IDs 00h – 7Fh)
=> Call up FC 43 function 3.

Bit 4 = emergency (COB-IDs 81h-FFh) or SYNC (COB-ID
80h) frame received => Call up FC 43 function 4.

Bit 5 = NMT error frame received (COB-IDs 700h-77Fh) =>
Call up FC 43 function 5.

Bit 6 = NMT service frame received (COB-IDs 780h-7FFh)
=> Call up FC 43 function 1.

The FC 49 should be called more than one time in longer SPS
cycles. Each call will send or receive one telegram.

If more than one CAN300 module is used in a system, the FC 49
can be called up with another CanDB for each module.

The bits in Bufferinfo can be used to optimize the calls of the
handling blocks.

38 CAN 300

6.3.10 FC 41 Reading and writing SDOs
With this FC you can read and write SDOs from a slave with up to
4 data bytes.

Parameter Direction Type Range Example
CanDB IN BLOCK-DB DB 1 – DB 2047 DB 140
Node IN INT 1 – 63 2
Index IN WORD 0h – FFFFh W#16#7300
Subindex IN BYTE 0h – FFh B#16#1
Type IN BYTE 2Bh, 23h, 2Fh, 40h B#16#2B
T IN TIMER T 0-511 T 41
ReturnType OUT BYTE MB 0 – MB 1023 MB 11
Status OUT BYTE MB 0 – MB 1023 MB 10
Error OUT WORD MW 0 – MW 1022 MW 16
Activate INOUT BOOL M 0.0 – M 1023.0 M 1.2
Data INOUT DWORD MD 0 – MD 1020 MD 12
AbortCode INOUT DWORD MD 0 – MD 1020 MD 14

CanDB internal DB with current CAN data, see
FC 40 Initialization

Node Node-ID of the CAN station
Index Index of the object
Subindex Subindex for the object
Type Size and direction of the object data:

40h = read SDO (8/16/32 bits),
23h = transmit 32 bits SDO,
2Bh = transmit 16 bits SDO,
2Fh = transmit 8 bits SDO

T Timer for Timeout, if there is no answer from
CANopen slave

ReturnType Write SDO: Size of the object data received (43h =
32 bits, 4Bh = 16 bits, 4Fh = 8 bits)
Read SDO: 60h = OK

Status Status byte of the job processing:
Bit 0 = job running
Bit 5 = An abort code exists
Bit 6 = Error (error number in error)
Bit 7 = Job complete

Error Error number on error in execution
Activate Activation bit for starting the job
Data Transfer the data (reading and writing)
AbortCode CANopen error number from CANopen slave

The FC must by called up cyclically. SDO transmission is only
triggered when the activation bit (Activate) is set. The FC resets
the bit after acceptance of the job. The current status of job
processing can be observed in the status byte.

CAN 300 39

The FC enters the required job in the CAN-DB and the job is only
executed when the FC 49 is called up.

FC 42 must be used for transmission of SDOs with more than 4
bytes (see 1.1.1).

Example:

 UN M 9.1 // new job ?
 UN M 111.0 // job runnng ?
 SPB next

 CALL FC 41
 CanDB := DB 40
 Node := MW 28
 Index := MW 30
 Subindex := MB 32
 Typ := B#16#40
 T := T 41
 ReturnTyp:= MB 33
 Status := MB 111
 Error := MW 112
 Activate := M 9.1
 Data := MD 34
 AbortCode:= MD 94

 UN M 111.7 // Ready ?
 SPB next
 U M 111.6 // Error ?
 SPB err

 L MD 34 // Get SDO-Value !

 // use here SDO Value depending on ReturnTyp (size)

next: ...

40 CAN 300

6.3.11 FC 42 Download and upload SDO block
With this FC you can read and write SDOs from a slave with more
than 4 data bytes. Transmission is performed with more than one
frame on the CAN bus ("SDO block transfer").

Parameter Direction Type Range Example
CanDB IN BLOCK-DB DB 1 – DB 2047 DB 140
BlockDB IN INT 1 – 2047 151
StartByte IN INT 1 – 65533 0
Status OUT BYTE MB 0 – MB 1023 MB 10
Error OUT WORD MW 0 – MW1022 MW 12
Activate INOUT BOOL M 0.0 – M 1023.7 M 1.2
AbortCode INOUT DWORD MD 0 – MD 1020 MD 14

CanDB internal DB with current CAN data, see
FC 40 Initialization

BlockDB Number of the CAN station
StartByte Index of the object
Status Status byte of the job processing:

Bit 0 = job running
Bit 5 = An abort code exists
Bit 6 = Error (error number in error)
Bit 7 = Job complete

Error Error number on error in execution
Activate Activation bit for starting the job
AbortCode CANopen error number from CANopen slave

The information of SDO transmission must be stored in a DB:

Byte Type Example Purpose
0 BYTE 1 Direction:

0 = Block upload,
1 = Block download,

2= Segmented upload,
3=Segmented download

2 WORD 4 Node
4 WORD 1004h SDO index
6 BYTE 1h SDO subindex
7 BYTE 32d Size (number of bytes)
8 ARRAY 1...n
 BYTE Net data
 ENDARRAY

i
Only one job from the
DB is executed for each
FC 42. It is possible to
concatenate several jobs.

The FC must by called up cyclically. SDO transmission is only
triggered when the activation bit (Activate) is set. The FC resets
the bit after acceptance of the job. The current status of job
processing can be observed in the status byte.

CAN 300 41

!
Timeout monitoring of
the jobs must be
performed by the S7
application. The
response times of the
CANopen slaves can be
very different.

The FC enters the required job in the CAN-DB and the job is only
executed when the FC 49 is called up.

If no response comes from the CANopen slave, the current job
can be deleted with FC 46.

42 CAN 300

6.3.12 FC 44 Transmit PDO
This FC transmits a PDO with data to a slave.

Parameter Direction Type Range Example
CanDB IN BLOCK-DB DB 1 – DB 2047 DB 140
Node IN INT 0 – 63 2
PDO IN INT 1 – 4 1
Length IN INT 1 – 8 4
Data1234 IN DWORD 0 – FFFFFFFFh W#16#10203040
Data5678 IN DWORD 0 – FFFFFFFFh W#16#00000000
SYNC IN INT 1, 3 1
Status OUT BYTE MB 0 – MB 1023 MB 10
Error OUT WORD MW 0 – MW1022 MW 12

CanDB internal DB with current CAN data, see
FC 40 Initialization

Node Number of the CAN station
PDO Number of the PDO
Length Length of the frame data
Data1234 The first 4 bytes of data (bytewise left -> right)
Data5678 The last 4 bytes of data (bytewise left -> right)
Sync PDO-Telegramm will be sent asynchronous (Sync =

1) or using one of the configured timers of the CAN
300 module synchronous (Sync = 3).

Status Status byte of the job processing:
Bit 6 = Error (error number in)
Bit 7 = Job complete

Error Error number on error in execution

The data bytes are transferred to the PDO frame bytewise from left
to right. If only one byte is to be transmitted, for example, it must
be in the top 8 bits of parameter Data1234.

The FC 44 transferes the CAN-Telegram directly to the CAN 300
module, calling the FC 49 is not necessary. The FC 44 can be
called several times in one cycle.

CAN 300 43

6.3.13 FC 45 Request PDO
This FC request a PDO from a slave. A PDO frame is transmitted
with an RTR bit set. The slave should then transmit a PDO with
its current data.

Parameter Direction Type Range Example
CanDB IN BLOCK-DB DB 1 – DB 2047 DB 140
Node IN INT 0 – 63 2
PDO IN INT 1 – 4 1
Status OUT BYTE MB 0 – MB 1023 MB 10
Error OUT WORD MW 0 – MW1022 MW 12

CanDB internal DB with current CAN data,
see FC 40 Initialization

Node Number of the CAN station
PDO Number of the PDO
Status Status byte of the job processing:

Bit 6 = Error (error number in)
Bit 7 = Job complete

Error Error number on error in execution

The data of the response frame are then found in the PDO-DB , or
can be fetched with FC 43 (see 6.3.14).

The FC 45 transferes the CAN-Telegram directly to the CAN 300
module, calling the FC 49 is not necessary. The FC 45 can be
called several times in one cycle.

44 CAN 300

6.3.14 FC 43 Spontaneous receive
With this FC it is possible to fetch frames that are received from
the CAN bus without any associated job.

Parameter Direction Type Range Example
CanDB IN BLOCK-DB DB1 – DB 2047 DB 140
Func IN INT 1 – 5 4
Status OUT BYTE MB 0 – MB 1023 MB 10
Error OUT WORD MW 0 – MW1022 MW 12
Node OUT INT MW 0 – MW 1022 MW 14
PDO OUT INT MW 0 – MW 1022 MW 16
Length OUT WORD MW 0 – MW 1022 MW 18
Data1234 OUT DWORD MD 0 – MD 1020 MD 20
Data5678 OUT DWORD MD 0 – MD 1020 MD 24

CanDB internal DB with current CAN data, see
FC 40 Initialization

Func Query function:
0 = TPDO frames from Slave with no defined PDO-
DB (COB-ID 180h-1FFh, 280h-2FFh, 380h-4FFh,
 480h-4FFh)
1 = NMT service frames (COB-ID 780h-7FFh)
2 = Timestamp frames (COB-ID 100h)
3 = NMT frames (COB-ID 00h-7Fh)
4 = Emergency (COB-ID 81h-FFh) or SYNC (80h)
 frames
5 = NMT error frames (COB-ID 700h-77Fh)

Status Status byte of the job processing:
Bit 6 = Error (error number in)
Bit 7 = Data received

Error Error number on error in execution
Node Number of the CAN station
PDO Number of the PDO (for function 0)
Length Length of the frame data
Data1234 The first 4 bytes of data (bytewise left -> right)
Data5678 The last 4 bytes of data (bytewise left -> right)

If there is a new frame, FC 43 is exited with status bit 7, otherwise
an error is output. You can find out whether a receive buffer is
allocated with the buffer info parameter when calling up the FC
49 cycle.

For each type of frame (see parameter Func) there is only one
receive buffer in the CAN-DB. For that reason, this FC should be
called up straight after the FC 49. Of course, that only applies if
the frames are important for the S7 application. Other wise the
unimportant frames are ignored or filtered out with the
acceptance forms of the module from the very beginning (=>
lower cycle time load).

CAN 300 45

6.3.15 FC 48 Network management
FC 48 can be used to transmit network management frames.

Parameter Direction Type Range Example
CanDB IN BLOCK-DB DB 1 – DB 2047 DB 140
Node IN INT 0 – 63 2
Func IN INT 1 – 6 1
Status OUT BYTE MB 0 – MB 1023 MB 10
Error OUT WORD MW 0 – MW1022 MW 12

i

The scripts should be
used for execution of
network management
functions during startup
of stop of the CAN 300
module (see 1.1)!

CanDB internal DB with current CAN data, see
FC 40 Initialization

Node Number of the CAN station (Node = 0 -> all nodes)
or Timernumber (for functions 10 & 11)

Func Network management function:
1 = Start Node
2 = Stop Node
3 = Disconnect Node
4 = Enter Preoperational
5 = Reset Node
6 = Reset Communication
10 = Timer Start (Timernumber in Node)
11 = Timer Stop (Timernumber in Node)

Status Status byte of the job processing:
Bit 6 = Error (error number in)
Bit 7 = Job executed without error

Error Error number on error in execution

The FC 48 transferes the NMT-Telegram directly to the CAN 300
module, calling the FC 49 is not necessary.

6.3.16 FC 46 Service
For deletion of suspended jobs and fetching of abort codes.

Parameter Direction Type Range Example
CanDB IN BLOCK-DB DB 1 – DB 2047 DB 140
Func IN CHAR ‘P’, ’S’, ’p’, ’s’, ’C’ ‘S’
Status OUT BYTE MB 0 – MB 1023 MB 10
Error OUT WORD MW 0 – MW 1023 MW 10

CanDB internal DB with current CAN data, see
FC 40 Initialization

Func Service function:
S = Delete SDO job
C = Delete all jobs (transmit and receive)

Status Status byte of the job processing:
Bit 6 = Error (error number in Error)
Bit 7 = Job executed without error

Error Error number for execution with error

46 CAN 300

6.3.17 FC 47 Nodeguarding/Heartbeat
FC 47 can be used to transmit nodeguarding frames or receive
heartbeat frames.

Parameter Direction Type Range Example
CanDB IN BLOCK-DB DB 1 – DB 2047 DB 40
BeatDB IN BLOCK-DB DB 1 – DB 2047 DB 47
GuardTimer IN T T 0 – T 511 T 47
TMTimer IN T T 0 – T 511 T 48
OnlyReceive IN BOOL TRUE/FALSE FALSE
Error OUT WORD MW 0 – MW1022 MW 12

CanDB internal DB with current CAN data, see
FC 40 Initialization

BeatDB DB with list of available (expected) slaves in the
network (see below)

GuardTimer Timer for delay between two requests
TMTimer Timer for response timeout of slave
OnlyReceive False = nodeguarding frames are being transmitted

and a response is expected from the slave
True = only heartbeat frames are received from the
slaves and entered in the BeatDB

Error Error number for incorrect execution

A DB that contains a list of the slaves to be monitored is required
for monitoring slaves with nodeguarding (BeatDB):

Byte Type Example Purpose
0 BYTE 14h SendDelay: 14h=20d x 10 = 200ms

time between two nodeguarding
frames

1 BYTE 32h TimeOut: 32h=50d x 10 = 500ms
timeout for response frames from slave

2 BYTE - Counter (used internally)
3 BYTE - reserved
4 BYTE 1 Node number of 1st slave
5 BYTE 0 Received status of 1st slave
6 BYTE 2 Node number of 2nd slave
7 BYTE 0 Received status of 2nd slave
8 BYTE 3 Node number of 3rd slave
9 BYTE 0 Received status of 3rd slave
… … … …
X BYTE 0 End of list

X+1 BYTE 0

If heartbeat frames are
used, timeout
monitoring must be
programmed in the
application!

If no nodeguarding telegrams are to be transmitted by the master
(OnlyReceive = True) , the timeouts have no effect.

Whenever a heartbeat frame is received, the status of this frame is
entered in the BeatDB next to the relevant node number. The user
should then evaluate this status and overwrite it with zero.
Separate timeout management is not necessary.

CAN 300 47

6.4 Explanation of the example program

The example program supplied with CANopen handling shows
how handling blocks are used in a very simple way. The
functionalities of the handling blocks are triggered by the bits in
input byte 8.

A simple CANopen IO slave with 8 outputs and 8 inputs as node
2 is used. The inputs have been wired directly to the outputs for
the purpose of this test.

The CAN 300 module must be configured on address 256.
Handling is initialized in OB100, where DB40 is used as the CAN-
DB and DB51 is used as the PDO1 data DB.

The example project "C3 CANopen Master.PAR" (installed with
CANParam) should be adapted to the test device (for example, to
the baudrate of the CAN bus) and then imported into the
CAN300 module.

6.4.1 Example FC 10 (cycle/SDO/PDO/network management)
When FC 10 starts, cycle block FC 49 (Chapter 1.1.1) is called
in order to fetch frames received by the CAN bus or to process
send requests. The buffer info is stored in MW 10 and displayed
on QW 0.

In network 2, nodeguarding can be activated via FC 47 (6.3.17)
with input bit 8.7. DB47 contains a list with node numbers
1+2+3, which are scanned cyclically.

In network 3, first of all the first two bytes of PD01 from POD1-
DB by node 2 and output on QW 2.

Cyclic transmission of PDO1 to node 2 can now be triggered with
input bit 8.0 (FC 44, 1.1.1). The value is always incremented by
1 and transmitted when the last value is returned by the node via
receive PDO1. Remove the compare query in these lines if you
want to transmit every cycle. The data are in MB12 - MB19, of
which only MW12 is incremented.

Network 4 comprises the fetching and receiving of a SDO (FC 41,
6.3.10) via input bits 8.1 and 8.2. The transfer parameters are in
the MW. A variables table (VAT_1) for testing is provided in the
project.

In network 5, FC 48 (6.3.15) is called up for network
management. Make sure that in the example project "DEMO.PR",
the CAN frames for "NMT start all nodes" and "NMT stop all
nodes" are in the scripts for starting and stopping the CPU.

48 CAN 300

6.4.2 Example FC 11 (spontaneous receive)
FC 11 is called up in OB 1 after FC 10, here, "unexpected" frames
that have been received are fetched from the CAN-DB buffer. This
function is controlled by the information in MW 10, which
contains the buffer info from FC 49.

These functions are only required if the application requires the
frames. It is not absolutely necessary to fetch these frames.

6.4.3 Example FC 12 (reading a SDO list)
Reading of a list of SDOs is organized in FC 12. The list of SDOs to
be read is to be found in DB 12 and might have to be adapted to
the devices used on the CANopen slave device(s) used.

In FC 12 the FC 41 (6.3.10) is started by input bit 8.4 for every
bit in DB 12 one after the other and the result (value or error
number) also placed in DB 12. DBW 0 must be reset before the list
in DB 12 can be processed again.

6.4.4 Example FC 13 (writing an SDO list)
The writing of a list of SDOs is organized in FC 13. The list of
SDOs to be written are stored together with their values in DB 13
and may have to be adapted to the CANopen slave device(s) used.

In FC 13 the FC41 (6.3.10) is started by input bit 8.5, for every
SDO in DB 13 one after the other and the result (error number or
OK status) also placed in DB 13. DBW 0 must be reset before the
list in DB 13 can be executed again.

6.4.5 Example FC 3 (SDO Block/Segmented Download)
FC 3 contains example calls for FC 42 (6.3.11) SDO
Block/Segmented Download. DB 3 contains a sample list and may
have to be adapted to the CANopen slave device if SDO
Download is actually needed.

CAN 300 49

6.5 Error numbers

Possible error numbers of the return parameter Error.

Number Meaning
1 Node below 1
2 Node above 63
3 PDO below 1, or timer number below 0
4 PDO above 4, or timer number above 11
6 No data available
11 Node below 0
12 There is no EndSegmentMode for UP
15 Initiation still there
16 No response expected
17 Node incorrect
18 Index incorrect
19 Subindex incorrect
22 ComSpec incorrect for DN
23 ComSpec incorrect for DN
24 ComSpec incorrect
25 ComSpec incorrect for DN
26 ComSpec incorrect for SDO write
27 ComSpec incorrect for SDO read
31 BlockSize incorrect for DN
32 DB block too small
33 DB block undefined
35 DB block too small
36 DB block write-protected
80 Toggle bit set incorrectly
90 ComSpec incorrect for UP
91 Expidited incorrect for UP
92 ComSpec incorrect for UP
93 ComSpec incorrect for UP
94 Segment number incorrect for UP
94 Segment number incorrect for DN
99 Timeout on SDO-job, no answer from CANopen slave
101 Buffer allocated, busy with a job.
102 Abort code received
105 Function number unknown
140 CAN 300 module not ready
141 CAN 300 module not ready for communication (buffer overfow)
142 System error
254 System error node scan
255 Function code undefined

50 CAN 300

6.5.1 Abort codes
Below you will find typical error messages that can be generated
by a CANopen slave.

i
Please also observe the
error numbers stated
directly for the data
handling blocks!

You will receive these error messages if you have requested SDO
transmission (FC 41, FC 42).

Code Meaning
0503 0000h “Toggle bit ”was not been alternated
0504 0000h SDO protocol “time out ”
0504 0001h Client/server command designation not valid or unknown
0504 0002h Unknown block size (block mode only)
0504 0003h Unknown block number (block mode only)
0504 0004h CRC error (block mode only)
0504 0005h Outside the memory
0601 0000h Access to this object is not supported
0601 0001h Attempted read access to an object that can only be written
0601 0002h Attempted write access to an object that can only be read
0602 0000h Object does not exist in the object directory
0604 0041h Object cannot be “mapped“ to a PDO
0604 0042h Size and number of “mapped“ objects exceeds the possible

PDO length
0604 0043h General parameters -incompatibility
0604 0047h General incompatibility in the device
0606 0000h Access violation due to a hardware error
0607 0010h Data type does not match, length of service parameter does

not match
0607 0012h Data type does not match, length of service parameter too

large
0607 0013h Data type does not match, length of service parameter too

small
0609 0011h Subindex does not exist
0609 0030h Out of value range of the parameter (only for write accesses)
0609 0031h Value of the parameter too large
0609 0032h Value of the parameter too small
0609 0036h Maximum value is smaller than the minimum value
0800 0000h General error
0800 0020h Data item cannot be transmitted or stored
0800 0021h Data item cannot be transmitted/stored because of local device

control
0800 0022h Data item cannot be transmitted/stored because of device

status
0800 0023 h Dynamic generation of the object directory not possible or

already exists

CAN 300 51

7 Appendix

7.1 Technical data

Order number CAN 300 700-600-CAN01
 CAN 300 (DNV) 700-600-CAN81

Dimensions 116 x 40 x 125 mm (LxWxH)

Weight Approx. 280g

CAN interface
Type: ISO/DIN 11898,
 CAN high speed physical layer
Transmission rate: 10 kbps to 1Mbps
Protocol: CAN 2.0A (11bit)
 CAN 2.0B (29bit)
 CANopen Master
 CANopen Slave on request
 DEVICENET available soon
Connection: Connector, SUB D 9-way

Configuration interface
Type: RS232, serial asynchronous
Transmission rate: 9.6 kbps
Format: 8/N/1
Connection: Connector, SUB D 9-way

Power supply
Voltage: +5V DC via backplane bus
Current consumption: 160mA (typ.) / 190mA (max.)

Special features
Quality assurance: According to ISO 9001:2000
Maintenance: Maintenance-free (no battery, rechargeable
 or non-rechargeable)

52 CAN 300

7.2 Pin assignment

Pin SUB-D connector RS232 SUB-D connector CAN
1 - -
2 Rx CAN Low
3 Tx CAN GND
4 - -
5 GND -
6 - -
7 - CAN High
8 - -
9 - -

7.3 Connecting cable

RS232 parameterization (700-610-0VK11) / Nullmodem:

 PC CAN 300

7.4 Further documentation

Internet: www.can-cia.org

CAN Specification 2.0, Part A & Part B

High Layer Protocol CANopen

Holger Zeltwanger: “CANopen”, VDE Verlag, ISBN 3-8007-2448-0

CAN 300 53

http://www.can-cia.org/

Notes

54 CAN 300

	Safety Information
	General
	Restriction of access
	Information for the user
	Use as intended
	Avoiding use not as intended!

	Installation and Mounting
	Vertical and horizontal mounting
	Minimum clearance
	Mounting of the module on the DIN rail

	System Overview
	Application and function description
	Connections
	CAN cabeling
	LED displays
	Scope of supply
	Accessories

	Configuration in the PLC
	Configuration of the CAN 300 module
	Create new project
	Setting the CAN bus baudrate
	Setting the transmission mode (protocol)
	Acceptance masks
	Network management
	Timer
	Synchro window
	Download
	Diagnostics/debugging

	Programming in the PLC
	Overview
	Layer 2 communication
	General
	CANSEND handling function
	CANRCV handling function
	CANSYNSEND handling function
	Content of the status byte STAT

	CANopen communication
	General
	Objects
	Functions
	Netmanagement
	Handling blocks
	CAN-DB
	FC 40 Initialization
	PDO-DBs
	FC 49 cycle
	FC 41 Reading and writing SDOs
	FC 42 Download and upload SDO block
	FC 44 Transmit PDO
	FC 45 Request PDO
	FC 43 Spontaneous receive
	FC 48 Network management
	FC 46 Service
	FC 47 Nodeguarding/Heartbeat

	Explanation of the example program
	Example FC 10 (cycle/SDO/PDO/network management)
	Example FC 11 (spontaneous receive)
	Example FC 12 (reading a SDO list)
	Example FC 13 (writing an SDO list)
	Example FC 3 (SDO Block/Segmented Download)

	Error numbers
	Abort codes

	Appendix
	Technical data
	Pin assignment
	Connecting cable
	Further documentation

